H∞ Discrete Time Fuzzy Control with Application to Chaos Control Based on Piecewise Lyapunov Functions
نویسندگان
چکیده
This paper presents an H controller synthesis method for discrete time fuzzy dynamic systems based on a piecewise smooth Lyapunov function. The basic idea of the approach is to design a piecewise linear state feedback control law and use a piecewise smooth Lyapunov function to establish the global stability with H performance of the resulting closed loop fuzzy control systems. It is shown that the control laws can be obtained by solving a set of Linear Matrix Inequalities (LMI). Application to control chaotic systems is given to illustrate the performance and advantages of the proposed method. Copyright © 2005 IFAC ∞
منابع مشابه
Linear matrix inequality approach for synchronization of chaotic fuzzy cellular neural networks with discrete and unbounded distributed delays based on sampled-data control
In this paper, linear matrix inequality (LMI) approach for synchronization of chaotic fuzzy cellular neural networks (FCNNs) with discrete and unbounded distributed delays based on sampled-data controlis investigated. Lyapunov-Krasovskii functional combining with the input delay approach as well as the free-weighting matrix approach are employed to derive several sufficient criteria in terms of...
متن کاملADAPTIVE FUZZY TRACKING CONTROL FOR A CLASS OF NONLINEAR SYSTEMS WITH UNKNOWN DISTRIBUTED TIME-VARYING DELAYS AND UNKNOWN CONTROL DIRECTIONS
In this paper, an adaptive fuzzy control scheme is proposed for a class of perturbed strict-feedback nonlinear systems with unknown discrete and distributed time-varying delays, and the proposed design method does not require a priori knowledge of the signs of the control gains.Based on the backstepping technique, the adaptive fuzzy controller is constructed. The main contributions of the paper...
متن کاملEnlarging Domain of Attraction for a Special Class of Continuous-time Quadratic Lyapunov Function Piecewise Affine Systems based on Discontinuous Piecewise
This paper presents a new approach to estimate and to enlarge the domain of attraction for a planar continuous-time piecewise affine system. Various continuous Lyapunov functions have been proposed to estimate and to enlarge the system’s domain of attraction. In the proposed method with a new vision and with the aids of a discontinuous piecewise quadratic Lyapunov function, the domain of attrac...
متن کاملControl for Uncertain Discrete-time-delay Fuzzy Systems Based on a Switching Fuzzy Model and Piecewise Lyapunov Function
Generalized H2 (GH2) stability analysis and controller design of the uncertain discrete-time Takagi-Sugeno (T-S) fuzzy systems with state delay are studied based on a switching fuzzy model and piecewise Lyapunov function. GH2 stability sufficient conditions are derived in terms of linear matrix inequalities (LMIs). The interactions among the fuzzy subsystems are considered. Therefore, the propo...
متن کاملInvestigation and Control of Unstable Chaotic Behavior Using of Chaos Theory in Two Electrical Power Systems: 1-Buck Converter2- Power Transformer
This paper consist of two sections: control and stabilizing approach for chaotic behaviour of converter is introduced in first section of this paper for the removal of harmonic caused by the chaotic behaviour in current converter. For this work, a Time- Delayed Feedback Controller (TDFC) control method for stability chaotic behaviour of buck converter for switching courses in current control mo...
متن کامل